Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system
نویسندگان
چکیده
منابع مشابه
Global Large Solutions to 3-d Inhomogeneous Navier-stokes System with One Slow Variable
In this paper, we are concerned with the global wellposedness of 3-D inhomogeneous incompressible Navier-Stokes equations (1.2) in the critical Besov spaces with the norm of which are invariant by the scaling of the equations and under a nonlinear smallness condition on the isentropic critical Besov norm to the fluctuation of the initial density and the critical anisotropic Besov norm of the ho...
متن کاملFujita Kato solution for compressible Navier-Stokes equation with axisymmetric initial data and zero Mach number limit
In this paper we investigate the question of the existence of global strong solution for the compressible Navier Stokes equations for small initial data such that the rotational part of the velocity Pu0 belongs to Ḣ N 2 −1. We show then an equivalence of the so called Fujita Kato theorem to the case of the compressible Navier-Stokes equation when we consider axisymmetric initial data in dimensi...
متن کاملGlobal well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations
The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (Arch. Ration. Mech. Anal. 204 (1):189–230, 2012, and J. Math. Pures Appl. 100 (1):166–203, 2013) to a more lower regularity index a...
متن کاملOptimal well-posedness for the inhomogeneous incompressible Navier-Stokes system with general viscosity
In this paper we obtain new well-possedness results concerning a linear inhomogenous Stokes-like system. These results are used to establish local well-posedness in the critical spaces for initial density ρ0 and velocity u0 such that ρ0−ρ ∈ Ḃ 3 p p,1(R ), u0 ∈ Ḃ 3 p −1 p,1 (R ), p ∈ ( 6 5 , 4 ) , for the inhomogeneous incompressible Navier-Stokes system with variable viscosity. To the best of o...
متن کاملNumerical Solution Techniques for the Steady Incompressible Navier-Stokes Problem
In this paper we discuss some recently published preconditioners for the incompressible Navier-Stokes equations. In combination with Krylov subspace methods, they give a fast convergence for the solution of the Navier -Stokes equations. With the help of numerical experiments, we report some new findings regarding the convergence of these preconditioners. Besides that, a renumbering scheme for d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2020
ISSN: 0001-8708
DOI: 10.1016/j.aim.2020.107007